Search results

Search for "ketol rearrangement" in Full Text gives 4 result(s) in Beilstein Journal of Organic Chemistry.

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • . Oxidation of the latter compound to the α-keto-β-hydroxy ester IV using DMDO and subsequent heating in PhCF3 triggered an α-ketol rearrangement which led to ketol V. Diastereoselective reduction gave α,β-dihydroxyester 35 which was converted to (−)-jiadifenoxolane A (36) in five further steps. Palau’amine
  • of an α-ketoester through Riley oxidation and its use in an α-ketol rearrangement in the synthesis of (−)-jiadifenoxolane A (36) [15]. Azomethine imine cycloaddition towards the synthesis of the proposed structure of palau’amine (44) [19]. Intramolecular diastereoselective carbonyl-ene reaction of an
PDF
Album
Review
Published 15 Sep 2022

Cs2CO3-Promoted reaction of tertiary bromopropargylic alcohols and phenols in DMF: a novel approach to α-phenoxyketones

  • Ol'ga G. Volostnykh,
  • Olesya A. Shemyakina,
  • Anton V. Stepanov and
  • Igor' A. Ushakov

Beilstein J. Org. Chem. 2022, 18, 420–428, doi:10.3762/bjoc.18.44

Graphical Abstract
  • synthesized α-phenoxyketones 4 in this reaction. The results showed that instead of benzo[b]furan formation, α-ketol rearrangement of phenoxyketones 4a,f occurred to afford β-phenoxyketones 9a,b in 55–60% yields (Scheme 10). Conclusion We have shown that the main direction of the reaction of bromopropargylic
  • experiments. A plausible mechanism for the formation of phenoxyhydroxyketone 4. A plausible mechanism for the formation of diphenoxyketone 5. Examples of representative preparation of phenoxyketones 4. α-Ketol rearrangement of phenoxyketones 4a and 4f. Screening of the conditions for reaction of
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2022

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • , tandem reactions, and the total synthesis and biosynthesis of natural products. This review explores the use of α-ketol rearrangements in these contexts over the past two decades. Keywords: acyloin rearrangement; asymmetric synthesis; iminol rearrangement; ketol rearrangement; tandem reactions
  • catalyst containing the chiral bisoxazoline ligand (S,S)-8 led to the α-ketol rearrangement product 7 in 70% yield and 68% ee (Figure 3) [5]. The study further demonstrated the effectiveness of the catalyst for a series of analogues of 6 bearing various replacements for the phenyl group, often proceeding
  • with greater than 80% ee. As a third example of an enantioselective α-ketol rearrangement, Dai et al. used a chiral Al(III) catalyst to induce the rearrangement of 3 (Ar = Ph) and several aryl derivatives 9 (Figure 4) [6]. Among the N,N′-dioxide ligands explored, 11, which was derived from ʟ
PDF
Album
Review
Published 15 Oct 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • was then converted to a 5,6-fused seco-prezizaane scaffold through an α-ketol rearrangement promoted by a strong base and after secondary alcohol protection with TBSCl, a Fe-catalyzed C–H activation reaction promoted a second lactonization to afford (+)-pseudoanisatin (Scheme 28B). In 2016, Chirik and
PDF
Album
Review
Published 30 Jul 2021
Other Beilstein-Institut Open Science Activities